Harvard

7 Ways to Simplify the Inverse of 1/7 Exponent

7 Ways to Simplify the Inverse of 1/7 Exponent
Inverse Of The Exponent 1/7

Understanding Exponents and Inverses

Maths Help

Exponents are shorthand for repeated multiplication. For instance, 2^3 means 2 multiplied by itself three times, or 2 \times 2 \times 2 = 8. The inverse operation of exponentiation is finding the logarithm. However, when dealing with fractions as bases and negative exponents, simplifying expressions can become complex.

The expression \left(\frac{1}{7}\right)^{-7} involves a fraction raised to a negative exponent. To simplify this, we need to apply the rules of exponents and fractions.

Rule 1: Negative Exponents

Doubt 3 Differentiation Iit Xii Watch How To Simplify Inverse Trigonometric Expressions F

A negative exponent indicates taking the reciprocal of the base to the power of the absolute value of the exponent. Therefore, \left(\frac{1}{7}\right)^{-7} can be rewritten as \left(\frac{7}{1}\right)^7.

📝 Note: When converting a negative exponent to a positive one, we flip the fraction and make the exponent positive.

Rule 2: Exponentiation of a Fraction

Exponent Rules Law And Example Simplifying Expressions Exponent

When a fraction is raised to a power, both the numerator and the denominator are raised to that power. Thus, \left(\frac{7}{1}\right)^7 becomes \frac{7^7}{1^7}.

📝 Note: The denominator, $1$, raised to any power remains $1$.

Rule 3: Simplifying the Expression

Finding The Inverse Of A Function Complete Guide Mashup Math

Since the denominator is 1 and any number raised to the power of 0 is 1, the expression simplifies to 7^7. This is because 1^7 = 1, making the denominator irrelevant.

Calculating the Value of $7^7$

Inverse Functions Do You Have To Simplify It At The End Or Can You Just Leave It As X 3 4

To calculate 7^7, we simply multiply 7 by itself seven times: 7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7.

Using Exponent Rules for Faster Computation

Example Of Inverse Property Of Multiplication

For expressions like 7^7, where the exponent is large, we can use the rule of exponentiation that states (a^m)^n = a^{m \cdot n}. However, since we’re not dealing with nested exponents here, we’ll focus on direct computation.

Direct Computation of $7^7$

How To Simplify Exponent Equations Exponents Expressions Simplify Solving Using Problem Homework

Calculating 7^7 directly gives us 7^7 = 823,543.

Conclusion

I Can Use The Exponent Rules To Simplify Expressions 292753 Gambarsaef1l

Simplifying the inverse of \left(\frac{1}{7}\right)^{-7} involves understanding the rules of negative exponents, exponentiation of fractions, and simplifying expressions. By applying these rules, we find that \left(\frac{1}{7}\right)^{-7} = 7^7 = 823,543.

What is the rule for negative exponents?

Inverse Function Example 1 Spm Additional Mathematics
+

A negative exponent indicates taking the reciprocal of the base to the power of the absolute value of the exponent.

How do you simplify an expression with a fraction raised to a power?

Simplifying Exponents Rules Different Bases Fractions Examples
+

Both the numerator and the denominator are raised to that power. The denominator remains 1 if it’s raised to any power, simplifying the fraction to the numerator raised to that power.

What is the final value of 7^7?

Simplifying Inverse Trig Expression Youtube
+

7^7 = 823,543.

Related Articles

Back to top button